МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М. А. БОНЧ-БРУЕВИЧА» (СП6ГУТ)

Санкт-Петербургский колледж телекоммуникаций им. Э.Т. Кренкеля

УТВЕРЖДАЮ Заместитель директора по учебной работе

<u> Маее</u> — Н.В. Калинина <u> 10 сентеября</u> 2025 г.

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

ОП.03. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

(наименование учебной дисциплины)

по специальности

09.02.13 Интеграция решений с применением технологий искусственного интеллекта (код и наименование специальности)

квалификация специалист по работе с искусственным интеллектом

Комплект контрольно-оценочных средств составлен в соответствии с ППССЗ по специальности 09.02.13 Интеграция решений с применением технологий искусственного интеллекта и рабочей программой по учебной дисциплине ОП.03. Теория вероятностей и математическая статистика.

Составитель:	,
Преподаватель	Н.С. Русанова (подцись)
ОБСУЖДЕНО	
на заседании предметной (цикловой) комиссии научных дисциплин) 03 сентября 2025 г., протокол №1	№ 3 (математических и естественно
Председатель предметной (цикловой) комиссии:	Н.С. Русанова (подпись)

ОДОБРЕНО

Методическим советом Санкт-Петербургского колледжа телекоммуникаций им. Э.Т. Кренкеля 10 сентября 2025 г., протокол №1

СОДЕРЖАНИЕ

конт	1	ХАРАКТЕРИС ЦЕНОЧНЫХ			4
	ОНТРОЛЬ И СНОЙ ДИСЦИ	ОЦЕНКА РЕЗ ПІЛИНЫ	УЛЬТАТОІ	3 ОСВОЕНИЯ	6

ПАСПОРТ КОМПЛЕКТА КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

1. ОБЩАЯ ХАРАКТЕРИСТИКА КОМПЛЕКТА КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ УЧЕБНОЙ ДИСЦИПЛИНЫ

1.1 Место дисциплины в структуре образовательной программы:

Учебная дисциплина ОП.03. Теория вероятностей и математическая статистика является обязательной частью общепрофессионального цикла образовательной программы в соответствии с ФГОС по специальности 09.02.13 Интеграция решений с применением технологий искусственного интеллекта.

1.2 Планируемые результаты освоения дисциплины:

В рамках программы учебной дисциплины обучающимися осваиваются умения и знания:

Код		Умения	Знания			
ОК, ПК,		3 WEITHA		Situition		
ЛР						
	37.1		20.1			
ОК 01. ОК 02.	У-1	выбирать способы решения	3-1	методы и подходы решения		
ОК 02. ПК 1.1.		задач профессиональной		задач профессиональной		
11K 1.1.		деятельности применительно		деятельности		
	У-2	к различным контекстам	3-2	aguany wydaniawyd w		
	y - Z	использовать современные	3-2	основы информационных		
		средства поиска, анализа и		технологий, методы анализа и		
		интерпретации информации, и		интерпретации данных		
	У-3	информационные технологии	3-3	OCHODIA HOCHIONIMATON CTO		
	y-3	планировать и реализовывать профессиональное и	J- J	основы предпринимательства, правовой и финансовой		
		личностное развитие,		грамотности, подходы к		
		использовать знания правовой		личностному развитию		
		и финансовой грамотности		in moemony passirino		
	У-4	эффективно	3-4	основы командной работы,		
		взаимодействовать и работать		принципы эффективного		
		в коллективе и команде		взаимодействия		
	У-5	осуществлять устную и	3-5	особенности		
		письменную коммуникацию		государственного языка		
		на государственном языке		Российской Федерации,		
		Российской Федерации		правила деловой		
		-		коммуникации		
	У-6	патриотическую позицию,	3-6	основы духовно-		
		демонстрировать осознанное		нравственных ценностей,		
		поведение		принципы		
				антикоррупционного		
				поведения		
	У-7	содействовать сохранению	3-7	основы экологии, принципы		
		окружающей среды,		бережливого производства,		
		эффективно действовать в		методы действий в ЧС		
		чрезвычайных ситуациях				
	У-8	использовать средства	3-8	основы физической культуры		
		физической культуры для		и здоровья, методы		

	поддержания здоровья		поддержания физической формы
У-9	пользоваться профессиональной документацией на государственном и иностранном языках	3-9	основы ведения профессиональной документации на разных языках

1.3. Матрица компетенций

№	Наименования практических занятий	Код	компетен	щии
1	Построение пространства элементарных исходов для заданных экспериментов.	ОК 01	ОК 02	ПК 1.1
2	Вычисление вероятностей событий на основе классического определения вероятности.	ОК 01	ОК 02	ПК 1.1
3	Вычисление условной вероятности и проверка независимости событий.	ОК 01	ОК 02	ПК 1.1
4	Вычисление математического ожидания и дисперсии дискретных случайных величин.	ОК 01	ОК 02	ПК 1.1
5	Построение и анализ биномиального и нормального распределений.	ОК 01	ОК 02	ПК 1.1
6	Применение распределения Пуассона для моделирования редких событий.	ОК 01	ОК 02	ПК 1.1
7	Демонстрация центральной предельной теоремы на основе генерации выборок и построения гистограмм.	ОК 01	ОК 02	ПК 1.1
8	Применение центральной предельной теоремы для оценки распределения сумм случайных величин.	ОК 01	ОК 02	ПК 1.1
9	Моделирование закона больших чисел на основе последовательных испытаний.	ОК 01	ОК 02	ПК 1.1
10	Оценка среднего значения выборки и математического ожидания с помощью закона больших чисел.	ОК 01	ОК 02	ПК 1.1
11	Построение точечных оценок параметров для различных распределений.	ОК 01	ОК 02	ПК 1.1
12	Оценка доверительных интервалов для среднего значения и дисперсии.	ОК 01	ОК 02	ПК 1.1
13	Проверка гипотез с использованием критерия Стьюдента для двух выборок.	ОК 01	ОК 02	ПК 1.1
14	Применение критерия χ^2 для проверки гипотез о независимости признаков.	ОК 01	ОК 02	ПК 1.1
15	Оценка ошибок первого и второго рода при тестировании гипотез.	ОК 01	ОК 02	ПК 1.1
16	Вычисление коэффициента корреляции Пирсона для анализа зависимостей между признаками.	ОК 01	ОК 02	ПК 1.1
17	Построение корреляционной матрицы для многомерных данных и её интерпретация.	OK 01	OK 02	ПК 1.1

18	Вычисление ковариации и её применение для оценки совместной изменчивости признаков.	ОК 01	ОК 02	ПК 1.1
19	Построение линейной регрессионной модели на основе экспериментальных данных.	ОК 01	ОК 02	ПК 1.1
20	Применение нелинейной регрессии для аппроксимации данных.	ОК 01	ОК 02	ПК 1.1
21	Проведение однофакторного дисперсионного анализа (ANOVA) для проверки различий между группами.	ОК 01	OK 02	ПК 1.1
22	Применение дисперсионного анализа для оценки влияния различных факторов на результаты экспериментов.	OK 01	OK 02	ПК 1.1

Оценочные материалы для практических занятий содержатся Методические рекомендации к выполнению практических занятий дисциплины ОП.03. Теория вероятностей и математическая статистика .

2. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Формы и методы оценивания

Основной целью оценки теоретического курса дисциплины является оценка умений и знаний.

Оценка осуществляется с использованием следующих форм и методов контроля согласно п.2.6 и п.2.10 Положения о текущем контроле успеваемости обучающихся Санкт-Петербургского колледжа телекоммуникаций им. Э.Т. Кренкеля:

текущий контроль — устный опрос на лекциях, практические занятия; практические задания; самостоятельные работы; контроль самостоятельной работы (в письменной или устной форме); тестирование (письменное или компьютерное);

рубежный контроль - тестирование (письменное или компьютерное); прием индивидуальных заданий.

Распределение методов оценивания по элементам учебной дисциплины:

т аспределение методов оценивания но элем	onitally footion A	теципиний.					
Элемент учебной дисциплины	Код компетенции	Методы оценки					
Раздел 1. Основы теории вероятностей							
Тема 1.1 Основные понятия теории вероятностей	OK 01., OK 02.,	устный опрос,					
	ПК 1.1.	практические					
		работы					
Тема 1.2 Случайные	ОК 01., ОК 02.,	устный опрос,					
величины и распределения	ПК 1.1.	практические					
		работы					
Тема 1.3 Центральная предельная теорема	OK 01., OK 02.,	устный опрос,					
	ПК 1.1.	практические					
		работы					
Тема 1.4 Закон больших чисел	ОК 01., ОК 02.,	устный опрос,					
	ПК 1.1.	практические					
		работы					
Раздел 2. Математическая статистика.	Раздел 2. Математическая статистика.						
Тема 2.1 Оценка параметров	OK 01., OK 02.,	устный опрос,					
_	ПК 1.1.						

		практические
		работы
Тема 2.2 Тестирование гипотез.	ОК 01., ОК 02.,	устный опрос,
	ПК 1.1.	практические
		работы
Тема 2.3 Корреляция и ковариация	ОК 01., ОК 02.,	устный опрос,
	ПК 1.1.	практические
		работы
Тема 2.4 Регрессионный анализ	ОК 01., ОК 02.,	устный опрос,
	ПК 1.1.	практические
		работы
Тема 2.5 Анализ дисперсии.	ОК 01., ОК 02.,	устный опрос,
	ПК 1.1.	практические
		работы

2.2. Типовые задания

2.2.1. Типовые задания для оценки освоения Раздела 1. Основы теории вероятностей.

Задачи:

- 1. Наудачу один раз бросается игральная кость. Найти вероятность выпадения числа очков, кратного трем.
- 2. Наудачу дважды подбрасывают монету. Найти: 1) вероятность выпадения двух орлов; 2) вероятность выпадения только одного орла;3) вероятность выпадения хотя бы одного орла.
- 3. На отрезке OA длины L числовой оси Ox наудачу нанесена точка B(x). Найти вероятность того, что отрезки OB и BA имеют длину больше, чем L/4.
- 4. На прямолинейном участке газопровода длиной 80 км произошел разрыв. Какова вероятность того, что разрыв удален от обоих концов участка на расстояние, большее 30 км?
- 5. Студент разыскивает нужную ему формулу в трёх справочниках. Вероятности того, что формула содержится в первом, втором, третьем справочниках соответственно равны 0,6, 0,7 и 0,8. Найти вероятность того, что формула содержится
 - а) Только в одном справочнике;
 - b) Только в двух справочниках;
 - с) Во всех трёх справочниках;
 - d) Ни в одном справочнике.
- 6. В ящике сложены 16 деталей, изготовленных на первом участке, 24 на втором, 20 на третьем. Вероятности того, что детали, изготовленные на соответствующих участках, имеют отличное качество, составляют 0,8, 0,6 и 0,8 соответственно. Определите вероятность того, что наудачу извлечённая деталь окажется отличного качества.
- 7. В корзине яблоки с четырех деревьев одного сорта. С первого 15% всех яблок, со второго 35%, с третьего 20%, с четвертого 30%. Созревшие яблоки составляют соответственно 99%, 97%, 98%, 95%.
 - а) Какова вероятность того, что наугад взятое яблоко окажется спелым (событие A).
 - b) При условии, что наугад взятое яблоко оказалось спелым, вычислить вероятность того, что оно с первого дерева.
- 8. Из урны, содержащей 3 белых и 2 чёрных шара, переложили два шара в урну, содержащую 4 белых и 4 чёрных шара. Затем из второй урны извлекают шар. Найти вероятность, что он белый.
- 9. Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равны 20, 15, 10. Из выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Детали возвращают в партию и вторично из этой же партии наудачу извлекают деталь, которая также оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.
- 10. Среди 13 деталей, которые содержатся в ящике, 8 стандартных, а остальные бракованные. Наугад берут 4 детали. Какова вероятность того, что взяты все стандартные детали или 2 стандартные и 2 бракованные?
- 11. Вероятность правильного оформления счета на предприятии составляет 0,9. Во время аудиторской проверки были взяты 3 счета. Найти вероятность того, что:
 - а) только 2 из них оформлены правильно;
 - b) хотя бы один из взятых счетов оформлен правильно?

- 12. В ящике 10 деталей, из которых 3 первого типа и 7 второго. Для сборки агрегата необходимо взять сначала деталь первого типа, а потом второго. Найти вероятность того, что наугад взятые детали будут в необходимой последовательности.
- 13. Вероятность рождения мальчика 0,515. Найти вероятность того, что в семье из пяти детей не более двух мальчиков.
- 14. Стрелок стреляет по мишени, расходуя все имеющиеся у него патроны. Вероятность одного попадания 0,6. Сколько патронов должно быть у стрелка, чтобы наивероятнейшее число попаданий было 10?
- 15. Вероятность хотя бы одного попадания при трёх выстрелах равна 0,936. Найти вероятность попадания в цель при одном выстреле.
- 16. Вероятность появления события А при отдельном испытании равна 0,6. Найти вероятность того, что при 150 испытаниях относительная частота появления этого события будет отличаться от его вероятности не более чем на 0,03.
- 17. Вероятность наступления события в каждом из независимых испытаний постоянна и равна 0.6. Сколько испытаний необходимо произвести, чтобы вероятность отклонения относительной частоты от 0,6, в ту и другую сторону менее чем на 0,01, была равна 0,995?
- 18. Вероятность появления события в каждом из 10000 независимых испытаний равна 0,75. Найти такое положительное число ε, чтобы с вероятностью 0,98 модуль отклонения частоты появления события от его вероятности не превышал ε.
- 19. Вероятности того, что студент сдаст экзамен в сессию по двум предметам, соответственно равны 0.7 и 0.8. Составить закон распределения дискретной случайной величины X числа экзаменов, которые сдаст студент.
- 20. Составить закон распределения дискретной случайной величины X числа гербов, выпавших при четырёх бросаниях правильной монеты.
- 21. Дискретная случайная величина Х задана законом распределения:

X	1	3	6	8
p	0,2	0,1	0,4	0,3

Построить многоугольник распределения.

22. Дискретная случайная величина Х задана законом распределения

X	2	4	7
P	0,5	0,2	0,3

Найти функцию распределения F(x) и начертить ее график.

23. Пусть ежедневные расходы на обслуживание и рекламу автомобилей в автосалоне составляют в среднем 120 тыс. денежных единиц, а число продаж X автомашин в течение дня подчиняется закону распределения

X	0	1	2	3	4	5	6	7	8	9
P	0,25	0,2	0,1	0,1	0,1	0,1	0,05	0,05	0,025	0,025

Найти математическое ожидание, дисперсию и среднеквадратическое отклонение ежедневной продажи числа автомобилей.

- 24. В магазин поступили изделия с двух фабрик в отношении 1:4. Куплено 5 изделий. Найти математическое ожидание и среднеквадратическое отклонение числа купленных изделий, изготовленных первой фабрикой.
- 25. Завод выпускает 96% изделий первого сорта и 4% изделий второго сорта. Наугад выбирают 1000 изделий. Найти математическое ожидание и дисперсию случайной величины X числа изделий первого сорта в данной выборке.
- 26. Найти дисперсию дискретной случайной величины X числа появлений события A в двух независимых испытаниях, если вероятности появления этого события в каждом испытании равны и известно, что M(X) = 0.9.
- 27. Дана функция распределения непрерывной случайной величины X

$$F(x) = \begin{cases} 0, x \le 0; \\ \sin x, 0 < x \le \frac{\pi}{2}. \\ 1, x > \frac{\pi}{2} \end{cases}$$

Найти функцию плотности вероятностей f(x) и построить ее график.

28. Задана плотность распределения непрерывной случайной величины *X*:

$$f(x) = \begin{cases} 0, x \le 0; \\ \cos x, 0 < x \le \frac{\pi}{2} \\ 0, x > \frac{\pi}{2} \end{cases}.$$

Найти функцию распределения F(x) и построить её график.

- 29. Непрерывная случайная величина X задана плотностью распределения f(x) = 1,5 sin 3x в интервале $\left(0;\frac{\pi}{3}\right)$; вне этого интервала f(x) = 0. Найти вероятность того, что X примет значение, принадлежащее интервалу $\left(\frac{\pi}{6};\frac{\pi}{4}\right)$.
- 30. Найти математическое ожидание случайной величины X, заданной функцией распределения

$$F(x) = \begin{cases} 0 \text{ при } x \le 0 \\ 0.25x \text{ при } 0 < x \le 4. \\ 1 \text{ при } x > 4 \end{cases}$$

- 31. Случайная величина X в интервале (0; π) задана плотностью распределения f(x) = 0.5 sin x, вне этого интервала f(x) = 0. Найти дисперсию величины X.
- 32. Случайные ошибки измерения детали подчинены нормальному закону с параметром $\sigma = 20$ мм. Найти вероятность того, что измерение детали произведено с ошибкой, не превосходящей по модулю 25мм.
- 33. Случайная величина распределена по нормальному закону с параметрами a=12 и $\sigma=8$. Найти вероятность того, что эта случайная величина примет значение а) из промежутка [3; 12]; б) меньшее 14; в) большее 25.

Вопросы устного опроса:

- 1. Какое событие называется достоверным?
- 2. Какое событие называется невозможным?
- 3. Как вычисляется вероятность события?
- 4. Может ли вероятность события быть больше 1? меньше 0?
- 5. В каких случаях пользуются геометрическим определением вероятности?
- 6. По какой формуле находят геометрическую вероятность?
- 7. Можно ли пользоваться геометрическим определением вероятности, когда число благоприятных и всех исходов конечно?
- 8. Что такое условная вероятность?
- 9. По какой формуле вычисляется условная вероятность?

- 10. В каких случаях пользуются формулой сложения вероятностей?
- 11. В каких случаях пользуются формулой умножения вероятностей?
- 12. Что такое условная вероятность?
- 13. При каких условиях используется формула полной вероятности?
- 14. При каких условиях используется формула Байеса?
- 15. Вероятность какого события можно найти по формуле Байеса?
- 16. Какие условия схемы Бернулли?
- 17. При каких условиях используется формула Бернулли?
- 18. Определение наивероятнейшего числа успехов?
- 19. По какой формуле определяется наивероятнейшее число успехов?
- 20. Когда используется формула Пуассона?
- 21. Когда используется формула Муавра-Лапласа?
- 22. Чем отличается интегральная теорема Муавра-Лапласа от локальной теоремы Муавра-Лапласа?
- 23. Как определяется функция распределения?
- 24. Является ли функция распределения убывающей? возрастающей?
- 25. Может ли значение функции распределения быть больше 1?
- 26. Является ли график функции распределения непрерывным?
- 27. Какими способами может быть задана дискретная случайная величина?
- 28. Определение математического ожидания? Что показывает математическое ожидание?
- 29. По какой формуле вычисляется математическое ожидание?
- 30. Определение дисперсии? Что показывает дисперсия?
- 31. По какой формуле вычисляется дисперсия?
- 32. По какой формуле вычисляется среднее квадратическое отклонение?
- 33. Как вычисляется функция плотности непрерывной случайной величины?
- 34. Непрерывна ли функция плотности?
- 35. В чём геометрический смысл функции плотности?
- 36. Как связаны функция плотности и функция распределения непрерывной случайной величины?
- 37. Как может быть вычислена функция распределения непрерывной случайной величины?
- 38. Как вычисляется математическое ожидание непрерывной случайной величины?
- 39. Как вычислить дисперсию непрерывной случайной величины?
- 40. Как вычислить среднее квадратическое отклонение непрерывной случайной величины?
- 41. Как вычислить вероятность попадания непрерывной случайной величины в заданный интервал?
- 42. Чему равна вероятность попадания нормально распределённой случайной величины в интервал, симметричный относительно среднего значения?
- 43. В чём состоит правило «трёх сигм»?

2.2.2. Типовые задания для оценки освоения Раздела 2. Математическая статистика.

Задачи:

1. Дана выборка количества обращений к психологу за последние 20 дней: 2, 0, 2, 0, 1, 0, 3, 0, 3, 1, 4, 3, 1, 0, 0, 1, 1, 3, 2, 2. Составить вариационный ряд, статистический ряд. Найти моду, медиану, размах ряда, среднюю выборочную, выборочную дисперсию и несмещенную выборочную дисперсию.

2. Дана выборка 1,6; 1,5; 2,4; 2,6; 4,9; 3,2; 1,0; 0,1; 0,0; 2,8; 0,3; 2,2; 0,8; 3,2; 8,0; 0,7; 4,1; 0,2; 0,3; 0,7; 3,3; 3,4; 4,6; 0,6; 0,5; 4,2; 3,7; 0,1; 0,4; 1,2; 4,5; 1,6; 1,5; 9,6; 4,0; 0,3; 0,7; 7,3; 2,5; 2,1; 2,7; 0,3; 0,9; 4,9; 0,1; 1,2; 0,5; 0,3; 1,4; 2,8; 0,6; 1,4; 0,8; 1,1; 0,9; 0,4; 1,2; 0,2; 0,1; 0,8. Данную выборку представить в виде интервального ряда с бю интервалами. Для полученного интервального ряда найти числовые характеристики.

2. Из генеральной совокупности извлечена выборка объёма 10:

X_i	-2	1	2	3	4	5
n_i	2	1	2	2	2	1

Оценить с надёжностью 0,95 математическое ожидание нормально распределённого признака генеральной совокупности по выборочной средней при помощи доверительного интервала.

3. При уровне значимости $\alpha = 0.1$ проверить гипотезу о равенстве математических ожиданий и гипотезу о равенстве дисперсий для двух случайных величин, заданных выборками

X: 4, 12, 45, 47, 55, 76, 53, 45 и Y: 15, 15, 47, 44, 51, 59, 50, 9, 15

4. Для двух данных выборок вычислить коэффициент корреляции и проверить его значимость на уровне $\alpha = 0.001$.

X	4,3	4,4	0,5	0,5	4,6
Y	1,2	2,8	1,5	2,1	1,5

Вопросы устного опроса:

- 1) Что такое выборка?
- 2) Что такое генеральная совокупность?
- 3) Чем отличается статистический ряд от вариационного?
- 4) Какие числовые характеристики бывают у выборки?
- 5) Чем отличается мода от медианы и от выборочной средней?
- 6) Чем отличается выборочная дисперсия от исправленной дисперсии?
- 7) Что такое интервальный статистический ряд?
- 8) Чем отличается интервальный ряд от дискретного?
- 9) В чём преимущества интервального ряда?
- 10) Как найти числовые характеристики интервального ряда?
- 11) Что такое доверительный интервал и для чего он используется?
- 12) Как вычислить доверительный интервал для оценки математического ожидания при неизвестной дисперсии? при известной дисперсии?
- 13) По какой схеме проверяются статистические гипотезы?
- 14) Как доказать гипотезу о равенстве математических ожиданий?
- 15) Как доказать гипотезу о равенстве двух дисперсий?
- 16) Как вычисляется коэффициент ковариации?
- 17) Что показывает коэффициент ковариации?
- 18) Как вычисляется коэффициент корреляции?
- 19) Что показывает коэффициент корреляции?

2.3. Критерии оценок по типам (видам) заданий

No	Тип (вид)	Критерии оценки
1	задания Устные ответы, письменные развернутые ответы	Оценка «5» ставится в том случае, если обучающийся правильно понимает сущность вопроса, дает точное определение и истолкование основных понятий; правильно анализирует условие задачи (вопроса), ответ логичен, умеет выстроить алгоритм поиска ответа самостоятельно; строит ответ по собственному плану, сопровождает ответ новыми примерами, умеет применить знания в новой ситуации; может установить связь между изучаемым и ранее изученным материалом из курса дисциплины, а также с материалом, усвоенным при изучении других дисциплин/модулей. Оценка «4» ставится, если ответ обучающегося удовлетворяет основным требованиям к ответу на оценку 5, но дан без применения знаний в новой ситуации, без использования связей с ранее изученным материалом и материалом, усвоенным при изучении других дисциплин/модулей; обучающийся допустил одну ошибку или не более двух недочетов и может их исправить самостоятельно или с небольшой помощью преподавателя. Оценка «3» ставится, если обучающийся правильно понимает сущность вопроса, но в ответе имеются отдельные пробелы в усвоении вопросов курса дисциплины, не препятствующие дальнейшему усвоению программного материала; умеет применять полученные знания при решении простых задач (заданий, вопросов) по готовому алгоритму; допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки и трех недочетов, допустил четыре-пять недочетов. Оценка «2» ставится, если обучающийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочетов, чем
2	Тесты	необходимо для оценки. «5» - 100 – 91% правильных ответов «4» - 90 - 70% правильных ответов «3» - 69 – 52% правильных ответов
4	Практические работы	 «2» - 51% и менее правильных ответов Оценка «5» выставляется, если обучающийся активно работает в течение всего практического занятия, правильно выполняет все этапы практического задания, на 100% выполняет практическую работу, заполняет основную надпись на чертеже. Оценка «4» выставляется при условии соблюдения следующих требований: обучающийся активно работает в течение практического занятия, правильно выполняет все этапы практического задания, на 85% выполняет практическую работу, допущены неточности, некоторые незначительные ошибки при выполнении практической работы, заполняет основную надпись на чертеже. Оценка «3» выставляется в том случае, когда обучающийся в целом овладел сути вопросов по данной теме, но на занятии ведет себя пассивно, допускает грубые ошибки при выполнении

практической работы, отвечает на теоретические вопросы по данной теме, но не может обобщить и сделать четкие логические выводы, работа выполнена на 60%, заполняет основную надпись на чертеже.

Оценка «2» выставляется в случае, когда обучающийся обнаружил несостоятельность осветить вопросы по данной теме практической работы или вопросы освещены неправильно. Практическая работа выполнена с грубыми ошибками, отсутствуют понимания основной сути практической работы, выводы, обобщения, обнаружено неумение оформлять техническую документацию в соответствии с действующей нормативной базой.

2.4. Фонды оценочных средств для промежуточной аттестации

Промежуточная аттестация по учебной дисциплине OП.03. Теория вероятностей и математическая статистика проводится в форме дифференцированного зачета.

2.4.1. Перечень вопросов к дифференцированному зачету

- 1. Понятие случайного события, алгебра событий.
- 2. Классическое определение вероятности.
- 3. Геометрическая вероятность.
- 4. Понятие вероятности и частоты события.
- 5. Теоремы умножения и сложения вероятностей.
- 6. Формула полной вероятности.
- 7. Схема и формула Бернулли.
- 8. Приближенные формулы в схеме Бернулли.
- 9. Формула(теорема) Байеса.
- 10. Понятие случайной величины, дискретной случайной величины, ее распределение и числовые характеристики.
- 11. Непрерывная случайная величина, ее распределение и числовые характеристики.
- 12. Законы распределения непрерывных случайных величин.
- 13. Центральная предельная теорема.
- 14. Выборочный метод математической статистики.
- 15. Выборка и её числовые характеристики.
- 16. Доверительный интервал.
- 17. Проверка статистических гипотез.
- 18. Коэффициент корреляции.
- 19. Линейная регрессия.
- 20. Дисперсионный анализ.

2.4.2. Типовые задания к дифференцированному зачету

- 1. По статистике, в городе за год из 1000 автомобилистов 22 попадают в аварию. Какова вероятность того, что автомобилист в этом городе весь год проездит без аварий?
- 2. Внутрь круга радиуса 3см наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг квадрата. Предполагается, что вероятность попадания точки в квадрат пропорциональна площади квадрата и не зависит от его расположения относительно круга.
- 3. Сколькими способами можно расставить 4 различные книги на книжной полке?
- 4. В мешке находятся 10 пронумерованных кубиков. Наугад берут по одному три кубика. Найти вероятность того, что последовательно появятся кубики с номерами 1, 2, 3, если их берут не возвращая.
- 5. Три цеха производят одинаковые детали, которые поступают на общую сборку. Вероятность изготовления стандартной детали в первом цехе 0,93, во втором 0,88, в третьем 0,85. Первый цех имеет три технологические линии, второй две, третий одну (линии одинаковой производительности). Найти вероятность того, что наудачу взятая деталь на сборке окажется нестандартной.
- 6. Два автомата изготавливают детали, которые поступают на общий конвейер. Вероятности получить бракованную деталь от 1-го и 2-го автоматов соответственно равны: 0,05; 0,08. Продуктивность первого автомата вдвое меньше

продуктивности второго. Наугад взятая с конвейера деталь оказалась стандартной. Найти вероятность того, что она изготовлена вторым автоматом.

- 7. Игральная кость брошена 6 раз. Найти вероятность того, что ровно 3 раза выпадет «шестёрка»?
- 8. Дан закон распределения дискретной случайной величины. Построить многоугольник распределения. Найти функцию распределения и математические характеристики.

X	13,6	23,6	24	24,6	25
p	0,1	0,1	0,1	0,4	0,3

9. Дана функция распределения
$$F(x) = \begin{cases} 0; x \le -1 \\ 0.5; -1 < x \le 0 \\ 0.9; 0 < x \le 1 \end{cases}$$
. Найти математическое $1: 1 < x$

ожидание распределения.

- 10. Найти математическое ожидание и дисперсию случайной величины X, распределённой по показательному закону с параметром $\lambda = 5$.
- 11. Средний диаметр детали равен 15см, а дисперсия равна 0,0001см². Определить максимальное отклонение размера диаметра наудачу взятой детали от среднего размера, которое можно гарантировать с вероятностью 0,9973.
- 12. Дана выборка 20.3; 15,4; 17,2; 19,2; 23,1; 18,1; 21,9; 15,3; 16,8; 13,2; 20,4; 16,5;19,7; 20,5; 14,3; 20,1; 16,8; 14,7; 20,8; 19,5; 15,4; 19,3; 17,8; 16,2; 15,7;22,8; 21,9; 12,5; 10,1; 21,1. Постройте статистический ряд распределения. Найдите числовые характеристики выборки.
- 13. Имеются следующие данные о числе обвиняемых по уголовным делам: 1; 5; 3; 1; 1; 2; 3; 1; 2; 4; 2; 1; 4; 1; 1; 4; 2; 1; 1; 1; 1; 1; 2; 2; 1; 4; 1; 2; 3; 1; 3; 1; 1; 3; 1; 1; 1; 2; 2; 1; 2; 1; 1; 2; 1; 2; 4; 1. Постройте интервальный вариационный ряд и найдите числовые характеристики ряда.

1.4.3. Критерии оценки ответа

Оценка «5» выставляется, если:

- полностью раскрыл содержание материала в объеме, предусмотренном программой;
- изложил материал грамотным языком в определенной логической последовательности точно используя специализированную терминологию и символику;
- правильно выполнил графическое изображение, схему, модель.

Оценка «4» выставляется, если:

- ответ удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившие логического и информационного содержания ответа;
- допущены ошибка или более двух недочетов в графическом представлении материала.

Оценка «3» выставляется, если:

— неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала,

— имелись затруднения или допущены ошибки в определении понятий, использовании терминологии, моделях, схемах.

Оценка «2» выставляется, если:

- не раскрыто основное содержание материала;
- обнаружено незнание или непонимание обучающимся большей или наиболее важной части учебного материала,
- допущены ошибки в определении понятий, при использовании терминологии, в моделях, схемах.

1.5. Итоговый тест

Итоговый тест включает в себя задания закрытого типа (с указанием правильных ответов) и задания открытого типа (предусматривающее развернутый ответ обучающегося).

2.5.1. Задания закрытого типа

№	Вопрос	Ответ	Код компет енции	Время выполнения (секунды)
1.	В игральной колоде 36 карт. Наугад выбирается одна карта. Какова вероятность, что эта карта – туз?	1) 1/36; 2) 1/35; 3) 1/9; 4) 36/4.	ОК 01., ОК 02., ПК 1.1.	30
2	Из слова «математика» выбирается наугад одна буква. Какова вероятность того, что эта буква «а»?	1) 1/10; 2) 2/10; 3) 3/10; 4) 4/10.	ОК 01., ОК 02., ПК 1.1.	45
3	Если объект A можно выбрать х способами, а объект $B-y$ способами, то каким количеством способов можно выбрать объект « A или B »?	1) <i>x</i> + <i>y</i> ; 2) <i>xy</i> ; 3) <i>x</i> или <i>y</i> .	ОК 01., ОК 02., ПК 1.1.	15
4	Для выяснения значимости коэффициента корреляции r_{xy} нужно	 Вычислить его значение; Проверить гипотезу об отсутствии линейной корреляционной связи между переменными <i>X</i> и <i>Y</i>; Проверить гипотезу о линейной 	ОК 01., ОК 02., ПК 1.1.	15

		корреляционной связи между переменными <i>X</i> и <i>Y</i> ; 4) Проверить гипотезу об		
		отсутствии линейной корреляционной связи между переменными <i>Y</i> и <i>X</i> .		
5	Какая из данных формул является формулой полной вероятности?	1) $P(A) = P(B_1)P_{B_1}(A) + P(B_2) \cdot P_{B_2}(A) + \dots + P(B_n) \cdot P_{B_n}(A)$ 2) $P_A(B_i) = \frac{P(B_i) \cdot P_{B_i}(A)}{P(A)}$ 3) $P_n(k) = C_n^k \cdot p^k \cdot q^{n-k}$ 4) $P_n(k) = \frac{n!}{k! \cdot (n-k)!} \cdot p^k \cdot q^{n-k}$	ОК 01., ОК 02., ПК 1.1.	15
6	Какая из данных формул является формулой Байеса?	1) $P(A) = P(B_1) \cdot P_{B_1}(A) + P(B_2) \cdot P_{B_2}(A) + \dots + P(B_n) \cdot P_{B_n}(A)$ 2) $P_A(B_i) = \frac{P(B_i) \cdot P_{B_i}(A)}{P(A)}$ 3) $P_n(k) = C_n^k \cdot p^k \cdot q^{n-k}$ 4) $P_n(k) = \frac{n!}{k! \cdot (n-k)!} \cdot p^k \cdot q^{n-k}$	ОК 01., ОК 02., ПК 1.1.	15
7	Из урны, содержащей 4 зелёных и 6 красных шаров, наугад вынимают два шара. Какова вероятность того, что оба шара зелёные?	1) 0,4; 2) 0,12; 3) 2/15; 4) 2/45	ОК 01., ОК 02., ПК 1.1.	60

8	В люстре лампочки разной мощности, которые могут перегореть в течение месяца с вероятностями 0,2, 0,3 и 0,4. Какова вероятность, что в течение месяца перегорят все три лампочки?	1) 0,9; 2) 0; 3) 1; 4) 0,024.	ОК 01., ОК 02., ПК 1.1.	120
9	Вероятность того, что студент сдаст экзамен по математике 0,8, а по физике 0,7. Какова вероятность, что на сессии студент сдаст оба экзамена?	1) 1,5; 2) 1; 3) 0,56; 4) 0,44.	ОК 01., ОК 02., ПК 1.1.	120
10	Какая из данных формул является формулой Бернулли?	1) $P(A) = P(B_1) \cdot P_{B_1}(A) + P(B_2) \cdot P_{B_2}(A) + \dots + P(B_n) \cdot P_{B_n}(A)$ 2) $P_A(B_i) = \frac{P(B_i) \cdot P_{B_i}(A)}{P(A)}$ 3) $P_n(k) = C_n^k \cdot p^k \cdot q^{n-k}$ 4) $P_n(k) = \frac{n!}{k! \cdot (n-k)!} \cdot p^k \cdot q^{n-k}$	ОК 01., ОК 02., ПК 1.1.	15
11	При автоматической наводке орудия вероятность непопадания по быстро движущейся цели равна 0,2. Найти наивероятнейшее число попаданий при 50 выстрелах?	1) 25; 2) 10; 3) 45; 4) 40.	ОК 01., ОК 02., ПК 1.1.	30
12	Закон распределения дискретной случайной величины это	1) взаимно однозначное соответствие между всеми возможными значениями случайной	ОК 01., ОК 02., ПК 1.1.	15

			величины и их		
			вероятностями;		
		2)	все значения		
			дискретной		
			случайной		
			величины;		
		3)	вероятности, с		
			которыми		
			случайная		
			величина может		
			принимать свои		
			значения;		
		4)	соответствие		
			между		
			порядковыми		
			номерами		
			значений		
			случайной		
			величины и их		
			вероятностями;		
1.0				074.04	
13	Вероятностный смысл	1)	среднему	OK 01.,	15
	математического		арифметическом	ОК 02., ПК 1.1.	
	ожидания случайной		у значений	1110 1.11	
	величины состоит в том,		случайной		
	что при большом числе	2	величины;		
	испытаний	2)	наиболее часто		
	математическое		повторяющемус		
	ожидание примерно		я значению		
	равно		случайной		
			величины;		
		3)	среднему		
			отклонению		
			значений		
			случайной		
			величины от		
			нуля;		
		4)	среднему		
			геометрическом		
			у значений		
			случайной		
			величины.		
i	1	ì		1	1

14	Чему равно		самой величине;	ОК 01.,	15
	математическое		нулю;	OK 02.,	
	ожидание постоянной		единице;	ПК 1.1.	
	величины	4)	бесконечности.		
15	Дисперсия характеризует	1)	степень рассеивания возможных значений	ОК 01., ОК 02., ПК 1.1.	15
			дискретной случайной		
			величины		
			вокруг его		
			среднего		
			значения;		
		2)	степень		
			рассеивания		
			возможных		
			значений		
			дискретной		
			случайной		
			величины		
			вокруг его		
			первого		
		2)	значения;		
		3)	среднее		
			значение		
			дискретной случайной		
			величины;		
		4)	нет правильного		
		7)	ответа.		
16	Чему равна дисперсия постоянной величины?	1) 2)	нулю;	OK 01., OK 02.,	15
	постоянной всличины:	,	единице; самой величине;	ПК 1.1.	
			бесконечности.		
		4)	осскопсчисти.		
17	Дискретная случайная	1) 1;	ОК 01.,	60
	величина Х задана	2	2) 2;	OK 02.,	
	законом распределения	3	6) 6;	ПК 1.1.	
	W 1 2 2	4	.) 3.		
	X 1 2 3				

	Матем: ожидан величи	ние сл	тучай	0,				
18	Случай называ если				3)	ее возможные значения — вся числовая ось или ее часть; ее функция распределения $F(x)$ есть непрерывная кусочнодифференцируе мая функция с непрерывной производной; ее возможные значения ограничены некоторым интервалом (a, b) ; ее функция распределения $F(x)$ является непрерывной.	ОК 01., ОК 02., ПК 1.1.	15
19	Функц непрер величи	ывно	й слу			вероятность того, что случайная величина X примет значение, меньшее x ; вероятность того, что случайная величина X примет	ОК 01., ОК 02., ПК 1.1.	15

			значение, большее x ; вероятность того, что случайная величина X примет значение, не меньшее x ; нет правильного ответа.		
20	Вероятность любого отдельного значения непрерывной случайной величины равна	4)	1; 0,5; 0,1.	ОК 01., ОК 02., ПК 1.1.	15
21	Вероятность того, что случайная величина X примет значение, заключенное в интервале $(a;b)$, равна	2)	P(a < X < b) = F(b) - F(a); $P(a < X < b) = F(b)F(a);$ $P(a < X < b) = F(a) - F(b);$ $P(a < X < b) = F(a)/F(b).$	ОК 01., ОК 02., ПК 1.1.	15
22	Вероятность того, что непрерывная случайная величина X примет значение, принадлежащее интервалу $(a;b)$, определяется равенством	2)	$P(a < X < b) =$ $\int_{a}^{b} f(x)dx;$ $P(a < X < b) =$ $\int_{b}^{a} f(x)dx;$ $P(a < X < b) =$ $\int_{a}^{b} F(x)dx;$ $P(a < X < b) =$ $\int_{a}^{b} F(x)dx;$ $P(a < X < b) =$ $\int_{b}^{a} F(x)dx.$	ОК 01., ОК 02., ПК 1.1.	15
23	Какая из формул устанавливает связь между плотностью распределения $f(x)$ и функцией распределения $F(x)$	2) 3)	f(x) = F'(x); f'(x) = F(x); F(x) = P(X < x); нет правильного ответа.	ОК 01., ОК 02., ПК 1.1.	15

24	Математическое ожидание непрерывной случайной величины определяется по формуле	3)	$M(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx;$ $f(x) dx;$ $M(X) = \int_{-\infty}^{+\infty} x^{2} \cdot f(x) dx - (M(X))^{2};$ $M(X) = \int_{a}^{b} x^{2} \cdot f(x) dx;$ $M(X) = \sum_{i=1}^{n} x_{i} \cdot p_{i}.$	ОК 01., ОК 02., ПК 1.1.	15
25	Если математическое ожидание $M(X)$ существует и кривая распределения симметрична относительно прямой $x=C$, то математическое ожидание равно	•		ОК 01., ОК 02., ПК 1.1.	15
26	«Предельные теоремы» это	2)	«закон больших чисел» и «центральная предельная теорема»; только «закон больших чисел»; только «центральная предельная теорема»; нет правильного ответа.	ОК 01., ОК 02., ПК 1.1.	15
27	«Центральная предельная теорема» устанавливает	1)	устойчивость средних значений: при большом числе испытаний их средний результат может быть предсказан	ОК 01., ОК 02., ПК 1.1.	15

			с достаточной		
			точностью;		
		2)	при достаточно		
			общих и		
			естественных		
			условиях закон		
			распределения		
			суммы		
			большого числа		
			случайных		
			величин близок		
			к нормальному;		
		3)	при большом		
			числе		
			испытаний		
			вероятность		
			реализации		
			случайного		
			события		
			становится		
			близкой к		
			единице;		
		4)	поведение		
			произведения		
			достаточно		
			большого		
			количества		
			случайных		
			величин		
			становится		
			ПОЧТИ		
			закономерным.		
28	Вся совокупность	1) выборі	кой;	ОК 01.,	15
	объектов,	генера.		OK 02.,	
	характеризующая		пностью;	ПК 1.1.	
	изучаемый признак,	 величи совотум 	•		
	называется:	4) совоку	ппостью.		
29	Часть генеральной	1) выбори		ОК 01.,	15
	совокупности	2) генера.		OK 02.,	
	называется:		пностью;	ПК 1.1.	
		3) величи4) совоку	•		
		т) совоку	IIIIUCI DIU.		
L	l			1	

30	Если выбранны	1) повторная;	OK 01.,	15
	элементы н	2) бесповторная;	ОК 02.,	
	возвращаются, т	3) типическая;	ПК 1.1.	
	выборка:	4) равномерная.		

2.5.2. Задания открытого типа

No	Вопрос	Код компетенции	Время выполнения (секунды)
1	Как называется точечная оценка, математическое ожидание которой не равно оцениваемому параметру?	OK 01., OK 02., ΠΚ 1.1.	15
2	При автоматической наводке орудия вероятность попадания по быстро движущейся цели равна 0,2. Найти наивероятнейшее число попаданий при 50 выстрелах?	ОК 01., ОК 02., ПК 1.1.	60
3	Случайная величина, принимающая отдельные возможные значения с определёнными вероятностями, называется	OK 01., OK 02., ΠΚ 1.1.	15
4	Величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка называется	ОК 01., ОК 02., ПК 1.1.	15
5	Дискретная случайная величина X задана $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	OK 01., OK 02., ΠΚ 1.1.	15
6	График плотности распределения называют	ОК 01., ОК 02., ПК 1.1.	15
7	Для непрерывной случайной величины среднеквадратичное отклонение равно 9. Дисперсия случайной величины равна	ОК 01., ОК 02., ПК 1.1.	15

8	Для непрерывной случайной величины дисперсия равна 4. Чему равно среднеквадратичное отклонение случайной величины?	OK 01., OK 02., ΠΚ 1.1.	15
9	В ящике содержится 100 красных, 300 зеленых, 200 синих и 200 белых шаров. Из ящика наудачу извлекают 150 шаров. Объем выборки составляет шаров.	OK 01., OK 02., ΠΚ 1.1.	15
10	Наиболее часто встречающееся наблюдение в выборке называется	OK 01., OK 02., ΠΚ 1.1.	15
11	Мода вариационного ряда 1, 2, 2, 3, 4, 5 равна	OK 01., OK 02., ΠΚ 1.1.	30
12	Выборочное среднее значение признака в выборке 11, 10, 9, 8	ОК 01., ОК 02., ПК 1.1.	30
13	Дан вариационный ряд выборки -2 , 0, 3, 3, 4, 5, 9, 11, 12, 15. Выборочная медиана для этого ряда равна	OK 01., OK 02., ΠΚ 1.1.	30
14	Дана интервальная оценка (8,4; 9,2) математического ожидания нормально распределенного количественного признака. Найти точечную оценку математического ожидания.	OK 01., OK 02., ΠΚ 1.1.	30
15	Дискретная случайная величина X задана законом распределения	ОК 01., ОК 02., ПК 1.1.	60
16	Вероятность рождения мальчика равна 0,51. Какова вероятность того, что среди	ОК 01., ОК 02., ПК 1.1.	60

	100 новорожденных будет от 45 до 55 девочек?		
17	Имеется 1000 деталей. Вероятность, обнаружить брак равна 0,001. Какова вероятность обнаружить 3 бракованных детали?	OK 01., OK 02., ΠΚ 1.1.	60
18	Вероятность не сдать экзамен у первого экзаменатора равна 0,3, у второго – 0,4, у третьего – 0,5. Первый экзаменатор принимает экзамены у 40% студентов, а остальные – у оставшихся студентов поровну. Какова вероятность, что студент сдаст экзамен?	OK 01., OK 02., ΠΚ 1.1.	60
19	В первой урне находятся 5 белых и 6 чёрных шаров, во второй - 4 белых и 2 чёрных шара. Из каждой урны наугад выбрали по одному шару. Какова вероятность, что оба шара красные?	OK 01., OK 02., ΠΚ 1.1.	60
20	Один стрелок попадает в цель с вероятностью 0,8, а другой - с вероятностью 0,5. С какой вероятностью цель будет не поражена?	OK 01., OK 02., ΠΚ 1.1.	60
21	Из 10 задач по теории вероятностей студент умеет решать 7 задач. Какова вероятность того, что из 5 задач контрольной студент решит хотя бы одну задачу?	OK 01., OK 02., ΠΚ 1.1.	30
22	По статистике, на каждые 1000 лампочек приходится 3 бракованные. Какова вероятность купить исправную лампочку?	ОК 01., ОК 02., ПК 1.1.	15
23	Пространство элементарных событий состоит из 12 равновозможных событий. Какова вероятность каждого элементарного события?	OK 01., OK 02., ΠΚ 1.1.	30
24	Событие называется достоверным, если его вероятность равна	OK 01., OK 02., ΠΚ 1.1.	15
25	Событие, которое при заданных условиях не может произойти называется	OK 01., OK 02., ΠΚ 1.1.	15

26	Бросается игральный кубик с шестью гранями. Событие A ={выпадет от 1 до 6 очков}	ОК 01., ОК 02., ПК 1.1.	15
27	Бросаются два игральных кубика. Событие <i>C</i> ={выпало 18 очков}	ОК 01., ОК 02., ПК 1.1.	15
28	Если случайные события <i>A</i> и <i>B</i> не могут появиться вместе, то они называются	ОК 01., ОК 02., ПК 1.1.	15
29	Оценка параметра генеральной совокупности интервалом, в который этот параметр с заданной вероятностью попадет – это оценка.	ОК 01., ОК 02., ПК 1.1.	15
30	Вероятность $\alpha = 1 - \gamma$ называется	ОК 01., ОК 02., ПК 1.1.	15